SECTION - B

[Total No. of Questions - 9] [Total No. of Pr d Pages - 3] (2126)

16193(D) " 0 DEC 2016

B. Tech 7th Semester Examination Digital Signal Processing (NS)

EC-413

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

- Note: (i) Attempt five questions in all selecting one question each from sections A, B, C & D. Section-E is compulsory,
 - (ii) All parts of a question should be answered at one place.
 - (iii) Answers should be brief and to-the-point supplemented with neat sketches.

SECTION - A

- (a) What are the types of representation of discrete-time signals? Represent a sequence in all the types. (10)
 - (b) Define the convolution of finite sequences and explain the Tabular Array method to find linear convolution. (10)
- 2. (a) Derive the relation between discrete-time Fourier transform and Z-transform. (10)
 - (b) Explain the Initial and final value theorem of Z-transform. Using final value theorem, find the $X(\infty)$, if X(Z) is given by

$$\frac{(Z+2)}{4(Z-1)(Z+0.7)} \tag{10}$$

(a) Explain the parallel form realization of the IIR system.

(10)

(b) Find the digital network in direct form-I and transposed form of system with difference equation:

y(n)=2 x(n)+0.3 x(n-1)+0.5 x(n-2)-0.7 y(n-1) - 0.9 y(n-2)(10)

- (a) Explain the Time reversal and differentiation in the frequency domain property of discrete time fourier transform. (10)
 - (b) What are the applications of discrete time fourier transform? (10)

SECTION - C

- 5. (a) Describe the procedure to compute the IDFT using radix-2 FFT. (10)
 - (b) Compare the radix-2 DIT and DIF FFTs. (10)
- 6. (a) Develop a DIF FFT algorithm for decomposing the DFT for N=6 and draw the flow diagrams for N=3×2. (15)
 - (b) What is the importance of radix-2 in FFTs? (5)

SECTION - D

- 7. (a) Describe the significance and applications of the STFT. (10)
 - (b) Explain the features of Haar wavelets. (10)
- 8. (a) Explain the features of a digital signal processor with block diagram. (10)
 - (b) List the various addressing schemes for digital signal processors. (10)

[P.T.O.]

16193

SECTION - E

- 9. (a) Distinguish between deterministic and random signals.
 - (b) Define a static system.
 - (c) List the properties of discrete convolution.
 - (d) What is autocorrelation?
 - (e) What is the ROC of a finite duration two-sided sequence?
 - (f) List the advantages of Z-transform.
 - (g) List the different type of structures for realization of FIR systems.
 - (h) Define the inverse discrete time fourier transform of a function X(w).
 - (i) What is slow and fast convolutions?
 - (j) List the applications of wavelet transform. (2×10=20)